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The boundary face method is coupled with the dual reciprocity method (DRM) to solve non-

homogeneous elasticity problems. We will analyze thin structures based on 3D solid elastic theory

rather than the shell theory as in the finite element method (FEM). To circumvent the ill-conditioning

problem that occurs in the radial basis function (RBF) approximation in thin structures, a special

variation scheme for determining the RBF parameters is proposed. In addition, a new exponential RBF is

used which has significantly improved the stability of the RBF, and its particular solution to the

elasticity problem is derived for the first time. Comparisons of our method with the traditional DRM,

the boundary element method (BEM) and the FEM have been made. Numerical examples have

demonstrated that our method outperforms the BEM and FEM with respect to stability, accuracy and

efficiency, especially when the structure in question has features of small size, such as thin shells.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary element method (BEM) is an efficient alternative
numerical technique for solving engineering problems, such as
Laplace equation, Navier’s equation, Helmholtz equation and
linear diffusion-reaction equation [1–4]. In the BEM, partial
differential equations (PDEs) are converted to an equivalent
boundary integral equation (BIE) by Green’s theorem and a
fundamental solution. Thus, only boundary discretization can
lead to an accurate result together with a high rate of conver-
gence. This is the main advantage over the classic domain
methods such as finite element method (FEM) and finite differ-
ence method (FDM).

Very recently, Zhang et al. have proposed the boundary face
method (BFM) based on BEM to make direct use of the boundary
representation (B-rep) data structure that is used in most CAD
packages for geometry modeling [5]. Similar with the widely
studied isogeometric analysis [6–8], the BFM has potential to
interact with the CAD packages seamlessly. Nevertheless, the BFM
is a bit different from the isogeometric analysis. The isogeometric
analysis applies the Non-Uniform Rational B-Splines (NURBS) as
the approximation function for both of the geometric quantities
and physical variables [6]. In the BFM, both boundary integration
and variable approximation are performed in the parametric
ll rights reserved.
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space as in the hybrid boundary node method (HdBNM) [9–11].
The integrand quantities are calculated directly from boundary
faces rather than elements as in the standard BEM, thus geometric
errors can be avoided. When the BFM is implemented using shape
functions from the Moving Least Squares [5], it becomes a
meshless method, and the BFM can be considered as a new
implementation of the boundary node method (BNM) [12–13].
Recently, Qin and Zhang have implemented the BFM using finite
elements defined in the parametric space of boundary faces [14],
which can be considered as a new implementation of the BEM.

Nevertheless, when dealing with non-homogeneous, non-lin-
ear problems and those to which fundamental solutions are
unavailable, the BEM and the BFM become less attractive since
domain integrals that remain in the BIE should be calculated. To
avoid the domain integrals, several methods have been proposed
including the radial integration method (RIM) [15] and the dual
reciprocity method (DRM) [16]. In both methods, a number of
points inside the domain should be applied. In the RIM, these
points are applied to approximate the domain integral kernel
appeared in the integral equation. In the DRM, the non-homo-
geneous term of the PDE is approximated by a series of simple
functions, and the domain integral of this non-homogeneous term
is transformed to the boundary integrals by employing particular
solutions of considered problem. It is worth noting that no
meshes are required for variable approximation inside the con-
sidered domain. In this work, the DRM is combined with the BFM
to solve the elasticity problem with body forces for the first time.
We call the combined method the dual reciprocity boundary face
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method (DRBFM). Since the accuracy and the stability of the
solution depend largely on the approximation, the choice of
the approximating functions is usually of crucial importance in
the DRM implementation. The most widely used approximating
functions are radial basis functions (RBFs).

The RBF interpolation is efficient in scattered data approxima-
tion. The ill-conditioned matrix generated by RBF interpolation,
however, limits its application in the large scale problems and
problems on thin structures. In order to circumvent the ill
conditioning problem appearing in the RBF interpolation, many
methods had been proposed such as the compact support RBF, the
multilevel method, the domain decomposition method, variable
shaped RBF and so on [17]. This paper uses variable shaped RBF to
circumvent the ill-conditioning problem.

In the variable shaped RBF method, the choice of the variation
scheme of the shape parameter is of great importance to the
accuracy and the stability of the interpolation. Sarra and Sturgill
[18] had verified a random variation scheme and Li, Zhu and
Zhang [19] had implemented a linear scheme successfully. In
those papers, the variable shaped RBF was implemented to
improve the accuracy of the interpolation rather than the stability
of the interpolation. In engineering problems, however, the
stability of the method is usually much more important, since
the analytical solutions for these problems are usually unavail-
able. With more emphasis on the stability of the interpolation,
Zhou et. al. [20] had proposed several variation schemes for
Multiquadric RBF and applied them to solve nonhomogeneous
potential problems.

This paper extends the DRBFM to solve the nonhomogeneous
elasticity problems. In this implementation, the variable shaped
exponential RBF is applied. A special variation scheme for problems
on thin structures is proposed. Using the method of Papkovich
potentials [21], the particular solution is deduced. The limitation
case of the particular solution has also been considered. To the
author’s knowledge, the particular solution of this exponential RBF
for Navier equation is presented for the first time.

As numerical examples, four non-homogeneous elasticity
problems on different structures are analyzed. Comparison study
between the conventional DRBEM and the DRBFM are made in the
first example. By equipping with the proposed variation scheme,
the stability of the DRBFM for the problem on thin structure is
illustrated in the second example. To demonstrate the accuracy of
the stress calculated by our method, a non-homogeneous elasti-
city problem on an elbow shaped pipe is solved in the third
example. In the last example, a real-world structure with a small
feature is analyzed. Small features are usually omitted in the FEM
analysis, as the degree of freedoms increases considerably if these
small features are considered in the grid model. The geometrical
simplification often results in very poor accuracy of stress at the
small features. Nevertheless, the local stresses are more con-
cerned by design engineers. For thin shell-like structures, shell
elements, which introduce additional strain assumptions, are
usually employed in the FEM. Solid elements with proper aspect
ratios should be used when high accuracy is demanded. This will,
however, result in large FEM models, and it may be difficult to
generate the FEM mesh for thin shell-like structures if the
geometry is complicated. In contrast, the analysis by BIE based
methods including BEM [22–25] and BFM can be directly per-
formed without any additional geometric assumptions. In BFM,
thin shell-like structures and structures with feature of small size
can be analyzed without any geometric simplification or assump-
tion. The result in last example has showed the attractive feature
of the proposed approach.

This paper is organized as follows. In Section 2, the DRBFM for
non-homogeneous elasticity problems is described. Section 3 pre-
sents the exponential RBF and variation schemes followed by the
derivation of the particular solution in Section 4. Four numerical
examples are presented in Section 5. This paper ends with conclu-
sions and future work in Section 6.
2. The dual reciprocity boundary face method for elasticity

This section gives a short description of the DRM. For more
details about this method, readers are suggested to consult [26].

We start from a boundary value problem in nonhomogeneous
elasticity theory:

Gui,jjþ
G

1�2nuj,jiþbi ¼ 0 XAO
ui ¼ ui XAG1

pi ¼ sijnj ¼ pi XAG2

8><
>: ð1Þ

where the domain O is enclosed by G¼G1[G2, G, n stand for the
shear module and Poisson rate of the material. bi¼bi(X) is the
distribution of the body force, ui and pi denote for the prescribed
displacements and tractions on the essential boundary G1 and on
the nature boundary G2, respectively. sij is the stress component
and n is the outward normal direction to the boundary G, with
components ni, i¼1,2,3.

In the DRM, the body force term is approximated by a series of
RBFs.

bi �
XNþL

k ¼ 1

ai
kjk ð2Þ

where N and L are the number of boundary points and inner
points, respectively. ai ¼ fai

1,ai
2, � � � ,ai

Nþ Lg
T

is the coefficient vec-
tor, which can be determined by the following equation:

Fai ¼ bi ð3Þ

in which F is the interpolation matrix of order NþL, and the entry
of vector bi are values of the interpolated function at each point.
The particular solution ~uk

mj satisfies the governing equation:

G ~uk
mj,llþ

G

1�2n
~uk

lj,lm ¼ dmjjk ð4Þ

Substituting Eq. (4) into Eq. (2), and then into the governing
equation, we have

Gui,jjþ
G

1�2n
uj,ji ¼

XNþ L

k ¼ 1

ai
k G ~uk

mj,llþ
G

1�2n
~uk

lj,lm

� �
ð5Þ

The same procedure for developing the BEM for the homo-
geneous Navier’s equation is applied on both part of Eq. (5),
producing the boundary integral equation (BIE):

ci
lju

i
jþ

Z
G

pn

ljujdG�
Z
G

un

ljpjdG

¼
XNþL

k ¼ 1

am
k ðc

i
lj
~uik

mjþ

Z
G

pn

lj
~uk

mjdG�
Z
G

un

lj
~pk

mjdGÞ ð6Þ

where un

lj,q
n

lj are the fundamental solution to the Navier’s equation
and its corresponding traction, respectively.

ci
lj ¼

dlj

2
ð7Þ

is a constant if G is a smooth boundary.
Instead of the BEM, the BFM is applied to solve this BIE in this

implementation. In the conventional BEM, the geometry coordinates
are approximated through the standard element, thus geometric
errors are inevitably produced. In the BFM, both the integration over
the boundary and the variable approximation are performed in the
parametric space. The integrand quantities such as the coordinates
of Gauss integration points, Jacobian and out normal are calculated
directly from the faces, which are represented in parametric form,
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rather than from standard elements. Thus geometric error can be
avoided. For more details about BFM, readers are suggested to [5].
After the boundary discretization and the boundary variable approx-
imation, we have the discretized BIE:

ci
lju

i
jþ
XN

t ¼ 1

Z
Gt

pn

ljðs,xiÞ
XN

n ¼ 1

NnðsÞujndGðsÞ�
XN

t ¼ 1

Z
Gt

un

ljðs,xiÞ
XN

n ¼ 1

NnðsÞpjndGðsÞ

¼
XNþL

k ¼ 1

am
k ci

lj
~uik

mjþ
XN

t ¼ 1

Z
Gt

pn

ljðs,xiÞ
XN

n ¼ 1

NnðsÞ ~u
k
mnjdGðsÞ

 

�
XN

t ¼ 1

Z
Gt

un

ljðs,xiÞ
XN

n ¼ 1

NnðsÞ ~p
k
mnjdGðsÞ

!
ð8Þ

where

ujn ¼ ujðxnÞ ð9Þ

and

pjn ¼ pjðxnÞ ð10Þ

The physical variable approximation on the boundary is
performed in the parametric space. It is of the form:

ujðx,y,zÞ ¼ ujðu,vÞ ¼ ujðx,ZÞ ¼
XN

n ¼ 1

Nnðx,ZÞujn

qjðx,y,zÞ ¼ ujðu,vÞ ¼ ujðx,ZÞ ¼
XN

n ¼ 1

Nnðx,ZÞqjn ð11Þ

where (u,v) is the parametric coordinate of (x,y,z) on the surface,
and (x,Z) is the corresponding normalized parametric coordinate.

The matrix form of Eq. (6) is

Hu�Gp¼ ðHÛ�GP̂Þa ð12Þ

in which

Û ¼

û11 û12 û13

û21 û22 û23

û31 û32 û33

2
64

3
75, û

ij
mk ¼ ~umkðxi,xjÞ ð13Þ

P̂ij ¼

p̂11 p̂12 p̂13

p̂21 p̂22 p̂23

p̂31 p̂32 p̂33

2
64

3
75, p̂

ij
mk ¼ ~pmkðxi,xjÞ ð14Þ

a¼
a1

a2

a3

2
64

3
75 ð15Þ

H¼

pn

11 pn

12 pn

13

pn

21 pn

22 pn

23

pn

31 pn

32 pn

33

2
64

3
75 ð16Þ

pnij
mk ¼

XN

t ¼ 1

Z
Gt

pn

mkðx,xiÞNjðxÞdGðxÞ ð17Þ

G¼

un

11 un

12 un

13

un

21 un

22 un

23

un

31 un

32 un

33

2
64

3
75 ð18Þ

unij
mk ¼

XN

t ¼ 1

Z
Gt

un

mkðx,xiÞNjðxÞdGðxÞ ð19Þ

u¼

u1

u2

u3

2
64

3
75, p¼

p1

p2

p3

2
64

3
75, ui

j ¼ uiðxjÞ, pi
j ¼ piðxjÞ ð20Þ
After Eq. (12) is solved, the displacement at any internal
location can be calculated from the equation:

ulðxÞþ
XN

t ¼ 1

Z
Gt

pn

ljðs,xÞ
XN

n ¼ 1

NnðsÞujndGðsÞ�
XN

t ¼ 1

Z
Gt

un

ljðs,xÞ
XN

n ¼ 1

NnðsÞpjndGðsÞ

¼
XNþL

k ¼ 1

am
k

~uk
mlðxÞþ

XN

t ¼ 1

Z
Gt

pn

ljðs,xÞ
XN

n ¼ 1

NnðsÞ ~u
k
mnjdGðsÞ

 

�
XN

t ¼ 1

Z
Gt

un

ljðs,xÞ
XN

n ¼ 1

NnðsÞ ~p
k
mnjdGðsÞ

!
ð21Þ

It worth noting that there are singular integrals appearing in
the diagonal terms of the matrix (16) and (18). Singular integrals
in matrix (16) were handled by a simple solution method
introduced in [27]. Singular integrals in matrix (18) were calcu-
lated through a triangular transformation which was introduced
by Zhang et. al. in [5].

The scheme for calculating nearly singular integral is of great
importance to BIE based method to analyzed thin structure
[22–25]. The scheme we applied in this paper is the subdivision
scheme. The main idea of this scheme is employing more integral
points to calculate the integral over the boundary patches near
the source points. For more details, refer to [5].
3. The variable shaped exponential RBF and the variation
schemes

The approximation function plays a key role in the DRM. In
most cases, RBFs are chosen to be the approximation functions. In
this paper, the exponential RBF is applied. It is of the form:

jiðrÞ ¼ e�cri ð22Þ

Although the positive definiteness of the interpolation matrix has
not been guaranteed theoretically, accurate results can be obtained
using this type of RBF. It is noted that the parameter c controls the
shape of the interpolation function. To improve the accuracy of the
interpolation, large value of this shape parameter is usually applied.
Large value of the parameter, however, results in ill-conditioned
interpolation matrix. In engineering problems, the stability of the
method is usually much more important than the accuracy since
the exact solutions are usually unavailable. To keep the stability of
the interpolation, a variable shaped exponential RBF is applied in
this work. The variable shaped exponential RBF is of the form

jiðrÞ ¼ e�ciri ð23Þ

in which the shape parameter varies according to the interpolation
center. The variation scheme for the parameter of the exponential
RBF we suggest is:

ci ¼
a

Di
ð24Þ

Di satisfies that there are 40–100 points in the ball, which is
centered at xi and whose radius is Di. The constant

ln2rar ln10 ð25Þ

is suggested. The determination of the constant will be discussed as
follows.

In Fig. 1, 40–100 neighbor points are located in the interval
(0,Di). To guarantee the accuracy of the interpolation, the value of
e�a should be as large as possible. In the other hand, small value
of e�a should be applied to keep the interpolation stable. In order
to balance the two contradictive factors

1
10 o ¼ e�ða=DiÞDi ¼ e�ao ¼ 1

2 ð26Þ
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is suggested. We have implemented numerical experiments with
the parameter provided by this formula for thousands of times
and we found this formula is effective.

In problems on thin structures, some boundary nodes are
usually very close. This phenomenon can be illustrated in Fig. 2.

The distance matrix for the points in Fig. 2 is

0 0:001 1

0:001 0 1

1 1 0

2
64

3
75 ð27Þ

Assuming c¼1, the corresponding interpolation matrix is

1 1
e0:001

1
e

1
e0:001 1 1

e

1
e

1
e 1

2
664

3
775 ð28Þ

The cosine of the angle between the first row vector and the
second row vector is 0.99999953. Obviously, the first row and
second row of the interpolation matrix are highly linear depen-
dent. This will cause serious problems in interpolation stability.

In order to make the first row and the second row more linear
independent, the parameter of the RBF which are centered at two
close points should be as large as possible. The special variation
scheme for problems on thin structures we propose is:

ci ¼
a
di

xiAG

ci ¼
a
Di

xiAO

(
ð29Þ

in which di is the distance between the ith interpolation point and
its nearest points. Applying this variation scheme with

a¼ ln3 ð30Þ

as suggested before, the interpolation matrix becomes

1 1
3

1
31000

1
3 1 1

31000

1
3

1
3 1

2
66664

3
77775 ð31Þ

The cosine of the angle between the first row vector and the
second row vector becomes 0.6. The condition of the matrix
becomes much better. It should be noted that, in order to
guarantee the accuracy of the interpolation, one additional
domain point between two boundary nodes should be applied.
Fig. 2. Nodes on

Fig. 1. Evaluation of constant a.
4. Particular solutions to Navier equation

In the DRM implementation, the analytical particular solution
of the RBF is necessary. Many methods had been proposed for
deducing the particular solution to Navier equation such as
Galerkin vector method and method using Papkovich potentials.
This paper applies the Popkovich potential to derive the particular
solution. For more details about the procedure, refer to [21].

The Navier equation can be represented by the matrix form:

GIDþðlþGÞrrðWÞ ¼jðrÞI ð32Þ

in which G,l are the Lame constant of the material, I stands for
the identity matrix of 3 orders and W denotes for the particular
displacement in matrix form. The particular displacements for
this equation can be decomposed into the form:

W¼ a1 � e1þa2 � e2þa3 � e3 ð33Þ

where ai,ei are unknown coefficient vector and the unit vector
along xi axes. � denotes for the dyadic. Inserting Eq. (33) into
Eq. (32), we obtain:

X3

k ¼ 1

½GDakþðlþGÞrrUak�jðrÞek� � ek ¼ 0 ð34Þ

that is

Dakþ
1

1�2nrrUak�
1

G
jðrÞek ¼ 0, k¼ 1,2,3 ð35Þ

The particular solution to Eq. (35) can be expressed by:

ak ¼Ak�
1

4ð1�nÞ
rðrUAkþakÞ, k¼ 1,2,3 ð36Þ

where the vector Ak and scalar ak satisfy the equation:

GDAk ¼jðrÞek ð37Þ

and

GDak ¼�jðrÞðrUekÞ ð38Þ

the solutions to Eq. (37) and to Eq. (38) are, respectively:

GAk ¼ gðrÞþ
c1

r

h i
ekþ

c2

r
ðe1þe2þe3�ekÞ ð39Þ

Gak ¼ qðrÞþc3rþ
c4

r2

h i
ðrUekÞ ð40Þ

where c1, c2, c3, c4 is the integral constant. g(r) and q(r) satisfy the
equations:

1

r

d

dr

d

dr
ðrgðrÞÞ

� �
¼jðrÞ ð41Þ

d

dr

1

r2

d

dr
ðr2qðrÞÞ

� �
¼�rjðrÞ ð42Þ

Substitute Eq. (39) and Eq. (40) into Eq. (36), and then inserting
into Eq. (33). We obtain the complete solution to Eq. (32)

~uijðrÞ ¼ p1ðrÞdijþp2ðrÞrirj ð43Þ

in which

p1ðrÞ ¼
3�4v

4ð1�vÞG
gðrÞ�

1

4ð1�vÞG

qðrÞ

r
ð44Þ
a thin shell.
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p2ðrÞ ¼
�1

4ð1�vÞG

g0ðrÞ

r
þ

q0ðrÞ

r2
�

qðrÞ

r3

� �
ð45Þ

In this paper, the exponential RBF is applied. The correspond-
ing g(r) and q(r) are

gðrÞ ¼
ð2þrcÞe�cr�2

c3r
ð46Þ

qðrÞ ¼�
r

c2
þ

4

c3
þ

8

c4r
þ

8

c5r2

� �
e�crþ

8

c5r2
ð47Þ

It is worth noting that proper evaluation of the integral
constants is important to keep

gðrÞAC1
ðOÞ ð48Þ

and

qðrÞAC1
ðOÞ ð49Þ

With the proper evaluation of the integral constants, the limits
of g(r), q(r) and other relative terms are listed as follows:

lim
r-0

gðrÞ ¼�
1

c2
ð50Þ

lim
r-0

g0ðrÞ ¼ 0 ð51Þ

lim
r-0

qðrÞ ¼ 0 ð52Þ

lim
r-0

q0ðrÞ ¼
1

3c2
ð53Þ

lim
r-0

g00ðrÞ ¼ lim
r-0

g0ðrÞ

r
¼

1

3
ð54Þ

lim
r-0

q0ðrÞ�
qðrÞ

r

� �
¼ lim

r-0

q0ðrÞ

r
�

qðrÞ

r2

� �
¼ 0 ð55Þ

lim
r-0

q0ðrÞ

r2
�

qðrÞ

r3

� �
¼�

1

5
ð56Þ

After the derivation of the particular displacements, the
corresponding strains, stresses and tractions can be derived
through the following formulations:

~eijkðrÞ ¼
1

2
ð ~uij,kðrÞþ ~uik,jðrÞÞ ð57Þ

~s ijkðrÞ ¼ 2G~eijkðrÞþ
2Gv

1�2v
~eimmðrÞdjk ð58Þ

~pijðrÞ ¼ ~s ijkðrÞnk ð59Þ
5. Numerical examples

Four examples are given in this section. In the first three
examples the material properties are simply evaluated:

Density : r¼ 1:14 ð60Þ

Young’s modules : E¼ 1:0 ð61Þ

Poisson’s rate : v¼ 0:25 ð62Þ

In the first two examples, the relative error is defined as
follow:

e¼
1

9v9max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1

ðvðeÞi �vðnÞi Þ
2

vuut ð63Þ
in which v stands for the concerned variable and v(e),v(n) are the
exact value and numerical value, respectively.

In this application, the density of internal RBF points depends
on the size of the surface element and is controlled by several
parameters. The basic idea for generating the internal RBF points
can be described briefly as follows:
(1)
 Construct an octree in which two points can be kept some
distance away.
(2)
 Create a ray starting from one boundary node and along the
negative direction of the outside normal.
(3)
 Compute the intersection points with all boundary surfaces,
find the nearest one.
(4)
 Generate several points on the segment between the starting
point and its corresponding intersection point.
(5)
 Put the point generated in the step (4) into the octree which is
constructed in the first step. Loop until all the points gener-
ated in step (4) are done.
(6)
 Loop from step (2) to step (5) until all the boundary nodes
are done.
(7)
 Store all the points that remain in the octree.

(8)
 It should be mentioned that the above procedure should be

performed after the boundary meshing.
5.1. Dirichlet problem on a torus

In this example, the essential boundary is imposed on the
boundary face of a torus. The torus, whose exterior radius and
interior radius are of 10 units and of 3 units, respectively, is
centered at the origin. This example is presented to show the
accuracy and convergence of the DRBFM with comparison to
traditional DRBEM.

The analytical solution is given as:

u1 ¼ x2þy3þz3

u2 ¼ x3þy2þz3

u3 ¼ x3þy3þz2

8><
>: ð64Þ

together with appropriately prescribed boundary conditions cor-
responding to the above analytical solution. The corresponding
body force is

b1 ¼ 2:4þ2:4yþ2:4z

b2 ¼ 2:4xþ2:4þ2:4z

b3 ¼ 2:4xþ2:4yþ2:4

8><
>: ð65Þ

In both of the DRBFM and the DRBEM analysis, displacements
and tractions on the boundary are approximated by linear
triangle elements. The comparison on convergence is made for
4 sets of elements. The numbers of elements, source points and
RBF interpolation points are listed in Table 1.

Figs. 3 and 4 illustrate 770 elements, 436 source points and
1077 RBF centers in one of the DRBFM analysis.

In this example, the variation scheme

ci ¼
ln3

Di
ð66Þ

is applied.
The errors of tractions on source points (nodes) are shown in

Fig. 5.
It is shown in Fig. 5 that the DRBFM is more accurate than the

DRBEM with the same number of elements and the same number of
RBF centers. It can also be concluded from Fig. 5 that the DRBFM is
less sensitive to the mesh density than the DRBEM and that
acceptable results can be obtained using a few elements. For
example, the relative error of the traction along x direction from



Fig. 4. Distribution of RBF centers.

Fig. 5. Comparison on convergence between DRBFM and DRBEM.

Fig. 6. A cylinder of 0.4 units thick.

Table 1
Number of elements, source points and RBF points in the first example.

1 2 3 4

Elements 520 770 1330 2136

Source points 302 436 733 1153

RBF points 420 1077 1952 2503

Fig. 3. Discretization of a torus.
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DRBFM is only 5.14% using 520 elements, and that from DRBEM
shoots up to 11.26%. All of these results are reasonable, because in
the DRBFM, the geometric data at Gaussian integral points are
calculated directly from the faces rather than from elements as in
the DRBEM, thus no geometric error is introduced even in a
coarse grid.

5.2. Dirichlet problem on a thin cylinder

The second example is presented to show the stability of the
VSERBF. We make comparisons between the VSERBF and the
constant shaped exponential RBF (CSERBF) on the error of trac-
tions at nodes. The analytical solution, boundary condition and
the body force for this problem are the same as those in the first
example. The cylinder is of 10 units high, and its outer diameter is
of 4 units. Seven cylinders with different thicknesses (0.4, 0.2, 0.1,
0.04, 0.02, 0.01 and 0.008) are considered in this example. Fig. 6
shows a cylinder of 0.4 units thick.

The relative errors of tractions on nodes obtained by two kinds
of RBF, the VSERBF and the CSERBF, are illustrated in Fig. 7. The
variation scheme Eq. (24) is used to determine the shape para-
meter of VSERBF with a is taken as ln3. In the case of CSERBF, the
constant parameter c in Eq. (22) is taken as 0.1. 474 quadric
quadrilateral surface elements and 1634 boundary nodes are used
in this computation.

It can be seen from Fig. 7 that the relative errors of tractions on
nodes, which are obtained by the constant shaped exponential RBF,
becomes unacceptable when the thickness of the cylinder is smaller
than 0.02 units. In contrast, the DRBFM equipped with VSERBF is
much more stable. A reliable result can be obtained even if the
thickness of the cylinder is smaller than 0.01 units. This feature is of
great importance for the DRBFM to analyze thin structures.

5.3. Dirichlet problem on an elbow pipe

The third example concerns a pipe structure of elbow shape.
The variation scheme for VSERBF we apply in this example is also



Fig. 8. Illustration of the elbow pipe.

Fig. 9. Location of sample points.

Fig. 10. Comparison on equivalent stress with exact solution.

Fig. 7. The accuracy of DRBFM using two kinds of RBF.
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Eq. (66). We compare the numerical two stress results with
analytical solution. The size of the elbow pipe is illustrated in
Fig. 8, and 50 sample points are distributed uniformly on a circle
as shown in Fig. 9. It should be noted that, the sample points are
arranged on a circle which is located inside the elbow pipe.

The Dirichlet boundary and the analytical solution for displa-
cement are given by:

u1 ¼ cosð0:3xÞþsinð0:3yÞþsinð0:3zÞ

u2 ¼ cosð0:3yÞþsinð0:3xÞþsinð0:3zÞ

u3 ¼ cosð0:3zÞþsinð0:3yÞþsinð0:3xÞ

8><
>: ð67Þ

The body forces in this example are:

b1 ¼�0:108cosð0:3xÞ�0:036sinð0:3yÞ�0:036sinð0:3zÞ

b2 ¼�0:108cosð0:3yÞ�0:036sinð0:3xÞ�0:036sinð0:3zÞ

b3 ¼�0:108cosð0:3zÞ�0:036sinð0:3yÞ�0:036sinð0:3xÞ

8><
>: ð68Þ

Approximations of physical variables are performed using 448
quadric quadrilateral elements. The comparisons with analytical
solution on equivalence stress and on maximal shear stress are
shown in Figs. 10 and 11.

It can be concluded from Figs. 10 and 11 that our method is
very accurate for the stresses inside the domain even if the
analytical solution varies rapidly.

To demonstrate the convergence of the proposed method, we
have analyzed this geometric model by a set of quadratic
elements which is listed in Table 2. In this table, NE, NN and NR
denote for the number of elements, the number of nodes and the
number of radial basis centers, respectively.

The relative errors of the tractions on boundary nodes are
calculated and illustrated in Fig. 12.

In Fig. 12, the black line with triangle, the red line with circle
and the blue line with square denote the relative error of traction
along X, Y and Z direction, respectively. It can be seen from Fig. 12
that the tractions, which are computed by the proposed method,
converge to the analytical solution rapidly.

5.4. A cylinder steel pipe with gravity

The last example concerns a practical problem without analy-
tical solution. To validate the accuracy of our method, a compar-
ison study between the DRBFM and the FEM has been made. The



Fig. 11. Comparison on maximal shear stress with exact solution.

Table 2
Number of elements (NE), nodes (NN) and RBF points (NR) in the 3rd example.

1 2 3 4 5 6 7 8

NE 112 148 176 254 306 368 440 520

NN 482 630 722 996 1186 1378 1618 1890

NR 490 641 736 1005 1387 1464 1954 2225

Fig. 12. Convergence study on traction result. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 13. Illustration of the cylinder pipe.

Fig. 14. 1461 boundary nodes and 1245 parametric elements in DRBFM. (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 3
The number of nodes and elements used in the FEA.

1 2 3

Nodes 30,345 40,865 106,145

Elements 6344 8418 22,620
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geometric dimensions of the structure is illustrated Fig. 13. It
should be noted that small fillets appear on the structure. These
small features are treated without any additional efforts in our
method since our method is performed directly on the solid
model. In the FEM, however, it is necessary to use a lot of nodes
and elements approximate them. Thus the computational scale
increases.

The bottom face of the structure is fixed, and a gravity force is
applied in the negative direction of the x axis. The Young’s
module, the density, the Poisson’s rate and the gravity accelera-
tion are given as 2.2�1011 Pa, 7800 kg/m3, 0.3 and 9.8 m/s2,
respectively.

In our method, 1461 boundary nodes and 1245 linear para-
metric Lagrange elements are used. Fig. 14 shows boundary nodes
(in black dots) and the boundary elements (in yellow line).
Besides the boundary nodes, 2813 points are applied for RBF
interpolation. The variation scheme we use in this example is the
same as that in the second example.

The finite element analysis (FEA) of this problem was per-
formed by the commercial software ANSYS 12.0. Three FEM
implementations are performed with various numbers of nodes
and elements as illustrated in Table 3.

The grid model with 8418 quadric elements is illustrated in
Fig. 15. We compute the equivalent stress on the blue circle as
shown in Fig. 16. It should be pointed out that the place in which
the blue circle lies usually concentrates stresses. But it is usually
omitted in the FEM for the reasons we introduced before.

Fig. 17 illustrates both results obtained by our method and
that by FEM.

In Fig. 17, the equivalent stress distribution obtained by our
method is denoted by the black line. Three colored lines denotes
for the stress distribution obtained by FEM with 106,145 nodes,
40,865 nodes and 30,545 nodes, respectively. The comparison
demonstrates that our method is efficient in calculating stresses.
With much less computational costs than that in the FEM, our
method can lead to a highly accurate stress result.



Fig. 16. Locations of the sample points. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 17. The equivalent stress on points sampled along the circle. (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

Fig. 18. A thinner steel pipe.

Fig. 19. Equivalent stress on the circle. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 15. Grid model with 8418 quadric elements and 40,544 nodes.
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It is worth noting that when the pipe becomes thinner, the
shell elements should be used in the FEM. The linkage between
the shell elements with the Lagrange elements is quite a trouble-
some task and usually leads to an inaccurate result. In our
method, however, the only difficulty for this case is the treatment
of the near singular integral [22–25,28–29]. We have also applied
our method to analyze a similar steel pipe whose thickness is only
2 cm as shown in Fig. 18. In this application, 1358 nodes, 1181
linear elements and 2028 interpolation points are used. The
distribution of equivalent stress on the blue circle as mentioned
above has been illustrated in Fig. 19. It is sufficient to demon-
strate that our method can be applied to solve problems on thin
structure with small features efficiently.
6. Conclusions and furture work

The DRM combined with the BFM to solve non-homogeneous
elasticity problem is presented in this paper. The DRBFM is
implemented based on boundary representation (B-rep) data
structure. The geometric data in the quality of the integrals are
calculated directly from the boundary faces, thus no geometric
error is introduced. This is the main advantage of DRBFM over
DRBEM. In the DRBFM, an exponential RBF has been employed.
The corresponding particular solution for elasticity has been
derived using the method of Popkovich potential. In order to
keep stability in analyzing thin structures, we have proposed a
variation scheme for the VSERBF.

The DRBFM with the VSERBF has been verified by several
numerical examples on different geometries. It has been observed
that the solution is accurate for the displacements and stresses on
the boundary and inside the domain. The DRBFM can provide
much more accurate result than the DRBEM. For the extreme case
of problems on thin shell structures, accurate and stable results
can be obtained. The implementation of the proposed method has
been performed directly on solid models. Thus the thin structures
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with small features, which are difficult to analyze by the FEM, can
be analyzed without any simplification and assumption.

The DRBFM requires the parametric representation of the
surface of a body and locations of some inner interpolation points.
In most CAD packages, solids are usually of B-rep. Therefore, the
DRBFM has real potential to seamless interact with CAD software.
Coupling the DRBFM with CAD software to handle arbitrary
surfaces is an ongoing work.

By coupling with the fast multipole method (FMM) [30–35],
the DRBFM may be applied to perform large-scale computations
for complicated structures. This is also ongoing.
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